Abstract

A bidirectional full-bridge CLLC resonant converter using a new symmetric LLC-type resonant network is proposed for a low-voltage direct current power distribution system. This converter can operate under high power conversion efficiency because the symmetric LLC resonant network has zero-voltage switching capability for primary power switches and soft commutation capability for output rectifiers. In addition, the proposed topology does not require any snubber circuits to reduce the voltage stress of the switching devices because the switch voltage of the primary and secondary power stage is confined by the input and output voltage, respectively. In addition, the power conversion efficiency of any directions is exactly same as each other. Using digital control schemes, a 5-kW prototype converter designed for a high-frequency galvanic isolation of 380-V dc buses was developed with a commercial digital signal processor. Intelligent digital control algorithms are also proposed to regulate output voltage and to control bidirectional power conversions. Using the prototype converter, experimental results were obtained to verify the performance of the proposed topology and control algorithms. The converter could softly change the power flow directions and its maximum power conversion efficiency was 97.8% during the bidirectional operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.