Abstract

When considering the practical engineering application of a waverider, the on-design and off-design aerodynamic characteristics of the design conditions, especially the lift-to-drag ratio and the stability, deserve attention. According to recently studies, the planform and rear sight shape of a waverider are closely related to the above aerodynamic performance. Thus, the planform leading-edge profile curve used to design the planform shape of a vehicle is applied to designing an osculating cone waverider. Two key parameters concerned in planform and rear sight shape, namely the plan view sweep angle of the leading edge and the dihedral angle of the underside are introduced to the waverider design process. Each parameter is inserted in the control curve equation. Especially, a parameterization scheme is put forward for the free adjustment of the sweep angle along the leading edge. Finally, three examples are generated for verification and investigation. After the verification process based on the inviscid flow field of one case, the influences of the sweep and dihedral angles on the lift-to-drag ratio and the lateral static stability are evaluated, and meaningful results are obtained. Based on these results, we can conclude that, considering the maximum lift-to-drag ratio, the sweep angle plays a role on the lift-to-drag ratio only at subsonic and trans/supersonic speed as a negligible effect is observed at hypersonic speeds, whereas the dihedral angle is seem to produce a relevant difference at hypersonic speeds. Considering the lateral static stability, the dihedral angles have more influence on the waverider than the sweep angles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call