Abstract

The relative intensity noise (RIN) characteristics in distributed feedback (DFB) lasers are analyzed theoretically by proposing a new methodology. In addition to temperature variation (T), the effect of other model parameters such as injection current (Iinj), active layer volume (V), spontaneous emission (βsp) and gain compression (ε) factors on RIN characteristics is investigated. The numerical simulations shows, the peak RIN level can be reduced to around –150 dB/Hz, while relaxation oscillation frequency (ROF) is shifted towards 5.6 GHz. In addition, the RIN level is increased with temperature by the rate of 0.2 dB/ºC and ROF is reduced by the rate of 0.018 GHz/ºC. Results show, the low RIN level can be obtained by selecting model parameters reasonably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.