Abstract
We present a bistable device consisting of a Bragg grating resonator with a Kerr medium sandwiched between two dielectric slab waveguides. The resonator is situated in a nanometer-scaled metal–insulator–metal plasmonic waveguide. Due to the dimensional confinement from the dielectric waveguide to the nanoscaled plasmonic waveguide, electric fields are enhanced greatly, which will further reduce the threshold value. Moreover, a semi-analytic method, based on the impedance theory and the transfer matrix method, is developed to study the transmission and reflection spectra as well as the bistability loop of such a switch. Our method is fast and accurate, as confirmed by the finite-difference time-domain simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.