Abstract

Spin-torque transfer magnetic random access memory (STT-MRAM) is a promising technology for next generation nonvolatile universal memory because it reduces the high write current required by conventional MRAM and enables write current scaling as technology becomes smaller in size. However, the sensing margin is not improved in STT-MRAM and tends to decrease with technology scaling due to the lowered supply voltage and increased process variation. Moreover, read disturbance, which is an unwanted write in a read operation, can occur in STT-MRAM because its read and write operations use the same path. To overcome these problems, we present a load-line analysis method, which is useful for systematically analyzing the impacts of transistor size and gate voltage of MOSFETs on the sensing margin, and also propose an optimization procedure for the commonly applicable MRAM sensing circuits. This methodology constitutes an effective means to optimize the transistor size and gate voltage of MOSFETs and thus maximizes the sensing margin without causing read disturbance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.