Abstract

To achieve force control of an industrial robot, this paper proposes an I-PD force control system based on an instantaneous state observer. The structure of the proposed system is based on a resonance ratio control system and a feedback signal of the reaction force response. In this paper, the gain of a pseudo derivation is designed as the feedback gain. From the results of the designed gains, the feedback gain Kf is a negative value. Hence, the resonance ratio control system becomes equivalent to a state feedback. For the stability of the proposed I-PD force control system based on the acceleration control system and a state feedback, a new analysis method is required. This paper analyzes an open-loop of the proposed system considering the bandwidth of the observer. The results of an analysis show that an observer with a wide bandwidth is required. Therefore, the parameters of proposed system using the instantaneous state observer are designed based on the coefficient diagram method. The effectiveness of the proposed method is confirmed by performing numerical simulations based on the model of an industrial robot arm. The results show that the proposed method is effective for the stable force control of an industrial robot arm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.