Abstract

It is well known that tunable lenses, with refractive power that can be varied, e.g., by changing the curvature of a membrane, can replace the motion of lens groups in zoom systems. Similar to classical zoom systems, the performance of these systems is heavily influenced by the fundamental first-order layout. Moreover, the first-order layout sets the most important requirements for the employed tunable lenses. In this contribution, we present a method for the analysis of a large number of possible first-order solutions for typical requirements and for the selection of the most promising layouts. The first-order solution space is mapped, allowing the layouts to be automatically filtered and plotted depending on pre-defined characteristics. Ray tracing of the marginal and chief rays combined with the traditional thin lens aberration theory provide efficient estimations of the expected installation space requirements and performance for each first-order layout. Using an example, we demonstrate good agreement between these estimations and the corresponding real lens layout, optimized by commercial raytracing software. The presented design method for zoom systems based on tunable lenses is compared with similar approaches for classical zoom lenses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.