Abstract
A theoretically based design method for the thickness of the base course of unpaved roads is developed in this paper, which considers distribution of stress, strength of base course material, interlock between geosynthetic and base course material, and geosynthetic stiffness in addition to the conditions considered in earlier methods: traffic volume, wheel loads, tire pressure, subgrade strength, rut depth, and influence of the presence of a reinforcing geosynthetic (geotextile or geogrid) on the failure mode of the unpaved road or area. In this method, the required base course thickness for a reinforced unpaved road is calculated using a unique equation, whereas more than one equation was needed with earlier methods. This design method was developed for geogrid-reinforced unpaved roads. However, it can be used for geotextile-reinforced unpaved roads and for unreinforced roads with appropriate values of relevant parameters. The calibration of this design method using data from field wheel load tests and laboratory cyclic plate loading tests on unreinforced and reinforced base courses is presented in the companion paper by the authors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Geotechnical and Geoenvironmental Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.