Abstract

Fiber steering is one of the promising capabilities of Automated Fiber Placement (AFP) technology in manufacturing of advanced composite structures with spatially tailored properties. The so-called variable stiffness (VS) composites have considerable scope to outperform their traditionally made constant stiffness (CS) counterparts. However, there are several design and manufacturing challenges to be addressed before practically using them as structural components. In this work we demonstrate the design, manufacturing and testing procedure of a variable stiffness (VS) composite cylinder made by fiber steering. The improved bending-induced buckling performance is the objective of the VS cylinder to be compared with its CS counterpart. The experimental results show that the buckling capacity of the VS cylinder is about 18.5% higher than its CS counterpart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call