Abstract

Rechargeable metal–air batteries and water electrolyzers based on aqueous alkaline electrolytes hold the potential to be sustainable solutions to address the challenge of storing large amounts of electrical energy generated from solar and wind resources. For these batteries and electrolyzers to be economically viable, it is essential to have efficient, durable, and inexpensive electrocatalysts for the oxygen evolution reaction. In this article, we describe new insights for predicting and tuning the activity of inexpensive transition metal oxides for designing efficient and inexpensive electrocatalysts. We have focused on understanding the factors determining the electrocatalytic activity for oxygen evolution in a strong alkaline medium. To this end, we have conducted a systematic investigation of nanophase calcium-doped lanthanum cobalt manganese oxide, an example of a mixed metal oxide that can be tuned for its electrocatalytic activity by varying the transition metal composition. Using X-ray absorption spectroscopy (XANES), X-ray photoelectron spectroscopy (XPS), electrochemical polarization experiments, and analysis of mechanisms, we have identified the key determinants of electrocatalytic activity. We have found that the Tafel slopes are determined by the oxidation states and the bond energy of the surface intermediates of Mn–OH and Co–OH bonds while the catalytic activity increased with the average d-electron occupancy of the σ* orbital of the M–OH bond. We anticipate that such understanding will be very useful in predicting the behavior of other transition metal oxide catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call