Abstract

The coolant flow in a nuclear reactor core under normal operating conditions is kept as a subcooled liquid. This coolant is evenly distributed throughout the multiple flow channels with a uniform pressure profile across each coolant flow channel. If the coolant flow is reduced, the flow through individual channels will also decrease. A decrease in coolant flow will result in higher coolant temperatures if the heat flux is not reduced. When flow is significantly decreased, localized boiling may occur. This localized boiling can restrict coolant flow and the ability to transfer heat out of the reactor system. The maximum operating power for the reactor may be limited by how the coolant system reacts to a flow instability. One of the methods to assure safe operation during a reducing flow instability, is to operate at a power level below that necessary to initiate a flow excursion. Several correlations have been used to predict the conditions which precede a flow excursion. These correlations rely on the steady state behavior of the coolant and are based on steady state testing. This task will evaluate if there are any deviations between the actual transient flow excursion behavior and the flow excursion behavior based onmore » steady state correlations (ONB, OSV, and CHF). Correlations will be developed which will allow a comparison between the time to excursive behavior predicted using steady state techniques and the actual time to excursive behavior.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call