Abstract

Different profiles of a wirebond utilizing a linkage-spring model are proposed in this paper, and loop heights are minimized in order to prevent wire sweep during molding. To analyze loop profiles, a nonquantitative, time-consuming, experimental statistical method was applied in previous studies. Although the finite element model is the most powerful tool in stress analysis, it is more complex in analyzing a large deformation as compared to the linkage-spring model. The purpose of this paper is to simulate the capillary trajectory from the first bond to the second bond stages by a linkage-spring model developed by Lo, and then to discover the proper wirebond trajectories. To meet with the gold wire properties, the transient temperature distribution along the gold wire during the bonding process is considered, Accordingly, the spring constants in a linkage-spring model are modified along the wire. Furthermore, the design rules in the looping process are defined and four examples of triangle- and T-profiles of a wirebond are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.