Abstract

Abstract This paper presents for non-coherent Optical Code Division Multiple Access (OCDMA) systems a new optical code namely Two-Dimensional Half Spectral/Spatial Zero Cross Correlation (2D-HSSZCC) code based on a One-Dimensional Zero Cross Correlation (1D-ZCC) code already developed using block matrices characterized by a high capacity. The results of simulation show that the use of the new (2D-HSSZCC) code eliminates totally the Multiple Access Interferences (MAI) due to the zero cross correlation flexibility, and less complexity of the code construction which produces a very low bit error rate of closely (4×10−18) at 1 Gbps for four users with a low power source of −12.60 dBm to reach a high data rate and high number of simultaneous users upper to closely 149, save an effective power around −1.35 dBm, −3.3d Bm compared between those provides by (Two-Dimensional dynamic cyclic shift (2D-DCS) code and Two-Dimensional Dimensional Diluted Perfect Difference (2D-DPD) and (1D-ZCC) code, and increase the cardinality percentage upper to 1.58, 2.19, 2.33 and 3.9 times comparing to (2D-DCS) code, 2D-DPD code, 1D-ZCC code and Two-Dimensional Flexible Cross Corelation/Modified Double Weight (2D-FCC/MDW) code. On the other hand, 2D-HSSZCC code is comparied with other codes which has it same property namely Two-Dimensional zero cross correlation/multi diagonal (2D-ZCC/MD) and (2D-MD) codes where the increased percentage in system capacity was 1.38 and 1.05 times, respectively. Finally, the results obtained in part 1 (with Matlab software) were confirmed and validated with the Optisystem software, the proposed system gave a better BER minimum value around 10−21 and a maximum value of the Q factor of around 9.4 at 622 Mbps of data rate when the number of simultaneous users increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call