Abstract

In this study, the design improvement was done in a shell and tube condenser for improved heat transfer and condensation of bio-oil vapour. The developed condenser has split shell and segmental baffles, which divide the shell in various zones and condensate collection points. The fast pyrolysis of wheat straw was done and the bio-oil vapour condensate collected from various outlets located at bottom of condenser shell. From experimental results it was found that production of bio-oil increased from 10.2 to 20.8% with increase in cooling water flow rate from 1000 to 2500 L/h; but, further increasing it beyond 2500 L/h provide marginal effects on production of bio-oil. The production of bio-oil increased from 15.2 to 20.7% as sweep gas flow rate was increased from 20 to 40 L/min at 2500 L/h of cooling water flow rate. But, further increase in sweep gas flow rate beyond 40 L/min resulted in to decrease in production of bio-oil. The novelty of this work is development of improved condenser with segmental baffles, which help in fractional condensation of bio-oil vapour, split shell for cleaning of outer surface of the cooling water tubes and compact design of condenser for optimal condensation of bio-oil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call