Abstract

Most medical robotic systems require direct interaction or contact with the robot. Force-Torque (FT) sensors can easily be mounted to the robot to control the contact pressure. However, evaluation is often done in software, which leads to latencies. To overcome that, we developed an independent safety system, named FTA sensor, which is based on an FT sensor and an accelerometer. An embedded system (ES) runs a real-time monitoring system for continuously checking of the readings. In case of a collision or error, it instantaneously stops the robot via the robot's external emergency stop. We found that the ES implementing the FTA sensor has a maximum latency of [Formula: see text] ms to trigger the robot's emergency stop. For the standard settings in the application of robotized transcranial magnetic stimulation, the robot will stop after at most 4 mm. Therefore, it works as an independent safety layer preventing patient and/or operator from serious harm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.