Abstract

Because reported use of simulation in preclinical basic science courses is limited, the authors describe the design, implementation, and preliminary evaluation of a simulation-based clinical correlation curriculum in an anatomy course for first-year medical students at Perdana University Graduate School of Medicine (in collaboration with Johns Hopkins University School of Medicine). The simulation curriculum, with five weekly modules, was a component of a noncadaveric human anatomy course for three classes (n = 81 students) from September 2011 to November 2013. The modules were designed around major anatomical regions (thorax; abdomen and pelvis; lower extremities and back; upper extremities; and head and neck) and used various types of simulation (standardized patients, high-fidelity simulators, and task trainers). Several methods were used to evaluate the curriculum's efficacy, including comparing pre- versus posttest scores and comparing posttest scores against the score on 15 clinical correlation final exam questions. A total of 81 students (response rate: 100%) completed all pre- and posttests and consented to participate. Posttest scores suggest significant knowledge acquisition and better consistency of performance after participation in the curriculum. The comparison of performance on the posttests and final exam suggests that using simulation as an adjunctive pedagogy can lead to excellent short-term knowledge retention. Simulation-based medical education may prove useful in preclinical basic science curricula. Next steps should be to validate the use of this approach, demonstrate cost-efficacy or the "return on investment" for educational and institutional leadership, and examine longer-term knowledge retention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call