Abstract

Abstract The ultra-compact combustor (UCC) aims to decrease the length of gas turbine combustors using a unique design geometry which wraps a combustion chamber around the central axial flow. This distinctive design enables an out of the box type of cooling scheme to be investigated for the turbine inlet vanes, termed the hybrid guide vane (HGV) in the UCC. The leading edge of the HGV experiences only compressor exit air as combustion products do not interact with the vane upstream of the 14% axial chord location. Previous studies were conducted which computationally evaluated the viability of taking in freestream flow through the HGV stagnation region for use as coolant. Based on these studies, a six vane HGV was manufactured which incorporated a solid vane and five hollow vanes. Each of these vanes incorporated different features to vary the size of the internal plug, trailing edge exit, and film cooling holes. In the present study, the cooled HGV was experimentally analyzed using pressure, thermocouple, and infrared (IR) thermography measurements to evaluate internal coolant flowrates and pressure loss along with cooling performance. Furthermore, the vanes were compared to isolate the impact of design differences on vane cooling. It was found that the location of the internal plug and incorporation of film cooling holes had a minor impact on coolant flow and cooling. Additionally, results showed exit area had the largest impact on surface temperature and coolant mass flow where the largest exit area allowed less restricted coolant flow resulting in the lowest average surface temperature. However, completely blocking the exit slot forced coolant to exit only through film cooling holes, stagnating the majority of the internal flow, resulting in surface temperatures higher than the uncooled, solid vane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.