Abstract

The reversed nested Miller compensation technique applied to a three-stage operational amplifier is discussed in this paper and new and simple design equations, accurately predicting the loop-gain phase margin, are developed. Techniques for parasitic positive-zero cancellation are also investigated and compared. For this purpose, we found that using nulling resistors is unpractical. Instead, exploiting only one follower (either a voltage or a current one) in the compensation branch results to be more appropriate. Indeed, not only does it avoid any additional constraint on stage transconductance, but it also overcomes the inherent limitations incurred by voltage and current followers when used to compensate two-stage amplifiers. Post-layout simulations on a CMOS opamp using the parameters of a 0.35-/spl mu/m process are found to be in good agreement with the expected results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.