Abstract

We propose a design tool for dielectric optical resonator-based biochemical refractometry sensors. Analogous to the widely accepted photodetector figure of merit, the detectivity D*, we introduce a new sensor system figure of merit, the time-normalized sensitivity S*, to permit quantitative, cross-technology-platform comparison between resonator sensors with distinctive device designs and interrogation configurations. The functional dependence of S* on device parameters, such as resonant cavity quality factor (Q), extinction ratio, system noise, and light source spectral bandwidth, is evaluated by using a Lorentzian peak fitting algorithm and Monte Carlo simulations to provide theoretical insights and useful design guidelines for optical resonator sensors. Importantly, we find that S* critically depends on the cavity Q factor, and we develop a method of optimizing sensor resolution and sensitivity to noise as a function of cavity Q factor. Finally, we compare the simulation predictions of sensor wavelength resolution with experimental results obtained in Ge17Sb12S71 resonators, and good agreement is confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.