Abstract

Deadlock-free operation of flexible manufacturing systems (FMSs) is an important goal of manufacturing systems control research. In this work, we develop the criteria that real-time FMS deadlock-handling strategies must satisfy. These criteria are based on a digraph representation of the FMS state space. Control policies for deadlock-free operation are characterized as partitioning cuts on this digraph. We call these structural control policies (SCPs) because, to avoid deadlock, they must guarantee certain structural properties of the subdigraph containing the empty state; namely, that it is strongly connected. A policy providing this guarantee is referred to as correct. Furthermore, an SCP must be configurable and scalable; that is, its correctness must not depend on configuration-specific system characteristics and it must remain computationally tractable as the FMS grows in size. Finally, an SCP must be efficient; that is, it must not overly constrain FMS operation. We formally develop and define these criteria, formulate guidelines for developing policies satisfying these criteria, and then provide an example SCP development using these guidelines. Finally, we present an SCP that guarantees deadlock-free buffer space allocation for FMSs with no route restrictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.