Abstract
Abstract The impact of non-ideal compressible flows on the fluid-dynamic design of axial turbine stages is examined. First, the classical similarity equation (CSE) is revised and extended to account for the effect of flow non-ideality. Then, the influence of the most relevant design parameters is investigated through the application of a dimensionless turbine stage model embedding a first-principles loss model. The results show that compressibility effects induced by the fluid molecular complexity and the stage volumetric flow ratio produce an offset in the efficiency trends and in the optimal stage layout. Furthermore, flow non-ideality can lead to either an increase or a decrease of stage efficiency up to 3–4% relative to turbines designed to operate in dilute gas state. This effect can be predicted at preliminary design phase through the evaluation of the isentropic pressure–volume exponent. Three-dimensional (3D) RANS simulations of selected test cases corroborate the trends predicted with the reduced-order turbine stage model. URANS computations provide equivalent trends, except for case study niMM1, featuring a non-monotonic variation of the generalized isentropic exponent. For such turbine stage, the efficiency is predicted to be higher than the one computed with any steady-state model based on the control volume approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.