Abstract
Micromechanical switches are of significant interest for advanced radio frequency and microwave systems, but their practical implementation is limited by low reliability. Electrodes of a microscopic size develop weak contact force that leads to high and unstable contact resistance. The force is typically increased by using a sophisticated switch design with extended lateral dimensions, although a simple and compact cantilever is more preferable. The paper describes for the first time a comprehensive approach to enhance the force of an electrostatically actuated switch. The strategy is applied to a miniature device based on a 50 µm long cantilever. The contact force is increased from 10 to 112 µN, making the switch strong enough to achieve low and stable contact resistance. The restoring force is also enhanced in order to ensure reliable de-actuation. The growth of forces is accompanied by a reduction in the pull-in voltage. Connecting several cantilevers in parallel and manipulating the number and position of contact bumps additionally improves the force and mechanical stability of the switch. An optimal design contains a triple cantilever with two bumps. It provides 50% higher force per contact compared to the single-cantilever switch at the same pull-in voltage and keeps the advantages of a miniature device. The proposed design strategy may be used for building reliable MEMS switches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.