Abstract

In this investigation, the electrical performance and reliability of multi-layer stretchable metal interconnects are evaluated using numerical simulations and experimental analysis. The numerical results show that the bi-layer design of stretchable interconnects have similar mechanics when compared to single layer interconnect structures. In contrast, interconnects configured in an in-plane stacked arrangement exhibit increased equivalent plastic strain during elongation, and consequently support less stretching. Our experimental results support these numerical findings. Maximum stretchability approaches ~150% elongation for single layer and bi-layer interconnects. In addition, fatigue experiments at 60% elongation show that the bi-layer design of stretchable interconnects have life cycles three orders of magnitude higher than the in-plane stacked arrangement of stretchable interconnects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.