Abstract
With the increase in product varieties, the combination of supermarkets and tow trains is being adopted by more automobile manufacturers for part feeding, especially in mixed-flow assembly lines. This paper focuses on the routing, scheduling, and loading problems of a single towed train that transports parts from one supermarket to the workstation buffer in a mixed-flow assembly line and aims to optimize the loading of the tow train, the optimal delivery schedule and route, and the appropriate departure time to minimize shipping and line inventory costs. To enable part feeding in line with the just-in-time (JIT) principle, a new mixed-integer mathematical model from nonlinearity to linearity and a novel artificial immune genetic algorithm-based heuristic are proposed. Both methods can provide reasonable solutions compared by minimizing the route length and inventory level in terms of speed, and the genetic algorithm shows better performance on a large scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.