Abstract

Design for Manufacturing (DFM) is a highly integral methodology in product development, starting from the concept development phase, with the aim of improving manufacturing productivity and maintaining product quality. While Design for Assembly (DFA) is focusing on elimination or combination of parts with other components (Boothroyd, Dewhurst and Knight, 2002), which in most cases relates to performing a function and manufacture operation in a simpler way, DFM is following a more holistic approach. During DFM, the considerable background work required for the conceptual phase is compensated for by a shortening of later development phases. Current DFM projects normally apply an iterative step-by-step approach and eventually transfer to the developer team. Although DFM has been a well established methodology for about 30 years, a Fraunhofer IAO study from 2009 found that DFM was still one of the key challenges of the German Manufacturing Industry. A new, knowledge based approach to DFM, eliminating steps of DFM, was introduced in Paul and Al-Dirini (2009). The concept focuses on a concurrent engineering process between the manufacturing engineering and product development systems, while current product realization cycles depend on a rigorous back-and-forth examine-and-correct approach so as to ensure compatibility of any proposed design to the DFM rules and guidelines adopted by the company. The key to achieving reductions is to incorporate DFM considerations into the early stages of the design process. A case study for DFM application in an automotive powertrain engineering environment is presented. It is argued that a DFM database needs to be interfaced to the CAD/CAM software, which will restrict designers to the DFM criteria. Consequently, a notable reduction of development cycles can be achieved. The case study is following the hypothesis that current DFM methods do not improve product design in a manner claimed by the DFM method. The critical case was to identify DFA/DFM recommendations or program actions with repeated appearance in different sources. Repetitive DFM measures are identified, analyzed and it is shown how a modified DFM process can mitigate a non-fully integrated DFM approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.