Abstract

Electromagnetic (EM) side-channel attacks aim at extracting secret information from cryptographic hardware implementations. Countermeasures have been proposed at device level, register-transfer level (RTL) and layout level, though efficient, there are still requirements for quantitative assessment of the hardware implementations’ resistance against EM side-channel attacks. In this paper, we propose a design for EM side-channel security evaluation and optimization framework based on the t-test evaluation results derived from RTL hardware implementations. Different implementations of the same cryptographic algorithm are evaluated under different hypothesis leakage models considering the driven capabilities of logic components, and the evaluation results are validated with side-channel attacks on FPGA platform. Experimental results prove the feasibility of the proposed side-channel leakage evaluation method at pre-silicon stage. The remedies and suggested security design rules are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.