Abstract

This paper proposes a scan design for delay fault testability of dual circuits. In normal operation mode, each proposed scan flip flop operates as a master-slave flip flop. In test mode, the proposed scan design performs scan operation using two scan paths, namely master scan path and slave scan path. The master scan path consists of master latches and the slave scan path consists of slave latches. In the proposed scan design, arbitrary two-patterns can be set to flip flops of dual circuits. Therefore, it achieves complete fault coverage for robust and non-robust testable delay fault testing. It requires no extra latch unlike enhanced scan design. Thus the area overhead is low. The evaluation shows the test application time of the proposed scan design is 58.0% of that of the enhanced scan design, and the area overhead of the proposed scan design is 13.0% lower than that of the enhanced scan design. In addition, in testing of single circuits, it achieves complete fault coverage of robust and non-robust testable delay fault testing. It requires smaller test data volume than the enhanced scan design in testing of single circuits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.