Abstract

Current global demand for the carbon emission reduction and the depletion progress of high-grade iron ore deposits require the integrated solution toward sinter and ironmaking process. Several countermeasures have been proposed regarding the development of highly reducible burden materials for the blast furnace and the use of beneficiated fine iron ores in the sintering machine. However, their application to actual sintering and ironmaking equipment have been limited because the sinter productivity is deteriorated. Here the present study investigated co-production of the carbon composite pellet and sinter with existing sintering machines. Even if fired in an oxidizing atmosphere, carbon-core-pellets can be produced under conditions that simulate the conventional sintering process. This is because a protective shell over the carbon core inhibits the carbon from combustion. Importantly, the structure and composition of the pellets are properly designed so that this protective shell does not melt overly or break during firing. The design parameters govern the strength and reducibility of pellets after firing, and those influence is analyzed quantitatively. Overall, a pot test trial in which designed pellets have been blended exhibited the viability of the pellet-sinter co-production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.