Abstract

We designed several shapes of aplanatic Fresnel acoustic lenses to correct spherical and coma aberrations. These lenses were made of room temperature vulcanizable (RTV) silicone rubber, and were designed by combining several aplanatic lenses. The converged sound pressure fields of these lenses were calculated numerically with the two-dimensional finite difference time domain (2D FDTD) method. The focal sound pressures of these lenses were 8–9 dB larger than those of aplanatic biconvex lenses. Comparing several aplanatic Fresnel lenses, the best convergence was achieved by the lens having the smoothest first surface. We assumed the reason for this advantage was the smooth first surface itself. Thus to smooth the first surface and to enlarge the focal sound pressure, small steps on the first surface were removed by two methods. The first method approximates the first surface to a polynomial equation. The second method changes the curvature of the aplanatic lenses to minimize the small steps; this method is called bending. The evaluation of the lenses made by the two methods showed that the resolutions of these lenses were higher than 1°. The lens made by bending showed higher sound pressure than the lens made by the approximated surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call