Abstract

Functional validation of modern microprocessors is an important and complex problem. One of the problems in functional validation is the generation of test cases that has higher potential to find faults in the design. We propose a model based test generation framework that generates tests for design fault classes inspired from software validation. There are two main contributions in this paper. Firstly, we propose a microprocessor modeling and test generation framework that generates test suites to satisfy modified condition decision coverage (MCDC), a structural coverage metric that detects most of the classified design faults as well as the remaining faults not covered by MCDC. Secondly, we show that there exists good correlation between types of design faults proposed by software validation and the errors/bugs reported in case studies on microprocessor validation. We demonstrate the framework by modeling and generating tests for the microarchitecture of VESPA, a 32-bit microprocessor. In the results section, we show that the tests generated using our framework's coverage directed approach detects the fault classes with 100% coverage, when compared to model-random test generation

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.