Abstract

Purpose Concentrated solar power and molten salt reactors use molten salts for heat energy storage and transfer. FLiNaK salts are being proposed to be used in these plants. However, structural material compatibility is the main hurdle for using molten salt in these systems. Hence, it is essential to study the degradation of materials in high temperature molten FLiNaK salt environment. In view of this paper aims to describe, a simulation facility which was established and operated for carrying out high temperature static corrosion studies of materials under molten FLiNaK salt. Design/methodology/approach This paper describes about the design criteria, method of designing using ASME codes, material selection, fabrication, testing, commissioning and operation. Also, a few experimental results have been illustrated. Findings A simulation facility could be designed, fabricated, commissioned and is being successfully operated to carry out corrosion experiments under static molten FLiNaK environment. Research limitations/implications The facility has been designed for 800°C and maximum temperature of experiment would be restricted to 750°C. The materials tested in this facility can be validated only up to 750°C temperature. A maximum of four exposure periods can be studied at a time with around ten specimens for each exposure. Originality/value Selection of compatible material for the facility and design certain unique features like extracting exposed specimens of intermediate periods without actually shutting down the autoclave and measuring the level of molten salt at high temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call