Abstract

This study presents the status and results from an effort to design, fabricate, and test an adaptive jet engine chevron concept based upon embedding shape memory alloy (SMA) actuators in a composite laminate, termed a SMA hybrid composite (SMAHC). The approach for fabricating the adaptive SMAHC chevrons involves embedding prestrained Nitinol actuators on one side of the mid-plane of the composite laminate such that thermal excitation generates a thermal moment and deflects the structure. A glass-epoxy pre-preg/Nitinol ribbon material system and a vacuum hot press consolidation approach are employed. A versatile test system for control and measurement of the chevron deflection performance is described. Projection moire interferometry (PMI) is used for global deformation measurement and infrared (IR) thermography is used for 2-D temperature measurement and feedback control. A recently commercialized constitutive model for SMA and SMAHC materials is used in the finite element code ABAQUS to perform nonlinear static analysis of the chevron prototypes. Excellent agreement is achieved between the predicted and measured chevron deflection performance, thereby validating the design tool. Although the performance results presented in this paper fall short of the requirement, the concept is proven and an approach for achieving the performance objectives is evident.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call