Abstract
It is essential to measure the shrinkage/expansion and positioning/aligning of magnets and to control valve displacement which plays a vital role in experiments like the Karlsruhe tritium neutrino experiment beam tube and Cryo pumps. Hence, a displacement sensor which, over a long working range, can be operated under extreme environmental conditions needs to be developed. Fiber Bragg gratings (FBG) have been considered to be excellent sensor elements useful for a variety of applications. This paper will discuss a long range displacement sensors based on fiber Bragg gratings for cryogenic temperature applications. The cryo pump inlet valve control requirements have been taken as example specifications for sensor design. To achieve the development goal, a proper signal transducer and sensor package were designed. A study of the strain transmission of surface-bonded FBG was conducted. The influence of bonding thickness and bonding length was reported. The design, fabrication, and performance were tested at low temperature of around 77K. The sensor performance was found to be satisfactory at both room temperature and 77K and linearly for long-range displacement of 550mm with 14pm/mm sensitivity and 0.142mm accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.