Abstract

Kinetic inductance detectors (KIDs) are a promising technology for astronomical observations over a wide range of wavelengths in the mm and sub-mm regime. Simple fabrication, in as little as one lithographic layer, and passive frequency-domain multiplexing, with readout of up to \(\sim \)1000 pixels on a single line with a single cold amplifier, make KIDs an attractive solution for high-pixel-count detector arrays. We are developing an array that optimizes KIDs for optical frequencies near 100 GHz to expand their usefulness in mm-wave applications, with a particular focus on CMB B-mode measurement efforts in association with the QUBIC telescope. We have designed, fabricated, and tested a 20-pixel prototype array using a simple quasi-lumped microstrip design and pulsed DC reactive magnetron-sputtered TiN/Ti/TiN trilayer resonators, optimized for detecting 100 GHz (3 mm) signals. Here we present a discussion of design considerations for the array, as well as preliminary detector characterization measurements and results from a study of TiN trilayer properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call