Abstract
MEMS piezoelectric energy harvester is optimally designed and fabricated, and its vibration characteristics, output voltage, power, power spectral density (SD) and frequency response function under harmonic and random excitation is studied by theory analysis, simulation and experimental test. For the designed MEMS piezoelectric energy harvester, the accurate solutions and expressions of amplitude, voltage, power and power spectral density are derived. Then, vibration characteristic, voltage, power and power SD with different load resistance, sinusoidal acceleration and random acceleration SD are simulated and tested; moreover, frequency response function of MEMS piezoelectric energy harvester is obtained by experimental test, and the results are consistent with theoretical model. When sinusoidal acceleration is 0.6 g, the maximal amplitude of mass is 116 µm and the power density is 0.1 mW/cm 3 . By testing results, output voltage of piezoelectric energy harvester is proportional to the amplitude, and the amplitude at optimal load is smaller than of at open circuit because of the feedback effect of load resistance. In addition, output power SD linearly increases with acceleration SD increasing. When acceleration SD is 5 × 10 −4 (m/s 2 ) 2 /Hz, power SD is 1.24 µW 2 /Hz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Electromagnetics and Mechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.