Abstract

Soft continuum manipulators are comprised of flexible materials in a serpentine shape. Such manipulators can be controlled mechanically through tendons or pneumatic muscles. Continuum manipulators utilizing tendons are traditionally formed in a thick cross section, which presents limitations in achieving a high bending range as well as difficulties for storage and transportation. This study introduces a continuum manipulator comprised of two thin plastic bands and driven by a tendon to provide a bending action. The manipulator’s thin body form enables it to be rolled up for storage and transportation. Experimental results on different section lengths show the possibility of achieving a horizontal displacement of up to 34% of the bending-segment’s length, and a full closed-loop curvature for most segments. However, the results also indicated an elongation of the tip paths owing to gravity. These results, in addition to the manipulator’s flexibility and light weight features, confirm its suitability for applications in space and underwater environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.