Abstract

Microelectromechanical systems (MEMS) accelerometers based on piezoelectric lead zirconate titanate (PZT) thick films with trampoline or annular diaphragm structures were designed, fabricated by bulk micromachining, and tested. The designs provide good sensitivity along one axis, with low transverse sensitivity and good temperature stability. The thick PZT films (1.5-7 /spl mu/m) were deposited from an acetylacetonate modified sol-gel solution, using multiple spin coating, pyrolysis, and crystallization steps. The resulting films show good dielectric and piezoelectric properties, with P/sub r/ values >20 /spl mu/C/cm/sup 2/, /spl epsiv//sub r/>800, tan/spl delta/ 6.5 C/m/sup 2/. The proof mass fabrication, as well as the accelerometer beam definition step, was accomplished via deep reactive ion etching (DRIE) of the Si substrate. Measured sensitivities range from 0.77 to 7.6 pC/g for resonant frequencies ranging from 35.3 to 3.7 kHz. These accelerometers are being incorporated into packages including application specific integration circuit (ASIC) electronics and an RF telemetry system to facilitate wireless monitoring of industrial equipment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call