Abstract
A new heterogeneously integrated III-V/Si laser structure is reported in this letter, which consists of a III-V ridge waveguide gain section on silicon, III-V/Si optical vertical interconnect accesses (VIAs) and silicon-oninsulator (SOI) nanophotonic waveguide sections. The III-V semiconductor layers are introduced on top of the 300 nm thick SOI layer through low temperature, plasma assisted direct wafer-bonding and etched to form III-V ridge waveguide on silicon as the gain section. The optical VIA is formed by tapering the III-V and the beneath SOI in the same direction with a length of 50 μm for efficient coupling of light down to the 600 nm wide silicon nanophotonic waveguide or vice versa. Fabrication details and specification characterizations of this heterogeneous III-V/Si Fabry–Pérot (FP) laser are given. The fabricated FP laser shows a continuous-wave lasing with a threshold current of 65 mA at room temperature and the slope efficiency from single facet is 144 mW/A. The maximal single facet emitting power is about 4.5 mW at a current of 100 mA and the side-mode suppression ratio is ~30 dB. This new heterogeneously integrated III-V/Si laser structure demonstrated enables more complex laser configuration with a sub-system on-chip for various applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.