Abstract

This paper reports the design, fabrication and control of arrayed microelectromechanical systems (MEMS)-based actuators for distributed micromanipulation by generation and control of an air-flow force field. The authors present an original design of pneumatic microactuator, improving reliability and durability of a distributed planar micromanipulator described in the previous study. The fabrication process is based on silicon-on-insulator (SOI) wafer and HF (hydroflouric acid) vapor release, which also significantly increases the production yield of the 560 microactuator array device of 35/spl times/35 mm/sup 2/. Minimization of the electrostatic actuation pull-in voltage through suspension shaping fabrication was also studied, and successfully validated for electrical efficiency improvement. A distributed control method to achieve good conveyance performance and reduce motion control instability was investigated. An emulation approach was chosen to validate a decentralized control strategy on the distributed active surface in order to conduct a proof-of-concept of a future smart structure, integrating sensors, intelligence, and microactuators. Thus, a centralized/decentralized control flow, inspired by autonomous mobile robot principles, was applied. It was modeled and implemented using C-programming language. Experimental and characterization results validate the control method for feedback micromanipulation with good velocity and load capacity performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.