Abstract

This paper reports design, fabrication, and characterization of liquid metal-based microheaters. Liquid metal microheaters designed via finite element simulation were fabricated by simply injecting eutectic gallium indium into polydimethylsiloxane (PDMS) microfluidic chips bonded to either silicon or PDMS substrates. Considering the net positive volume change of the microheater upon heating, both nonpressurized and pressurized contacts between the power supply and the liquid metal wires were investigated. The pressurized contact was found to provide more reliable electrical connection, thus more stable long-term operation than the nonpressurized contact. Due to higher thermal conductivity, liquid metal microheaters with silicon substrate exhibit better temperature uniformity than ones with PDMS substrate. However, liquid metal microheaters with PDMS substrate are flexible and deformable, thus more suitable than ones with silicon substrate when microheaters should be applied to nonflat objects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.