Abstract

This paper presents the design, fabrication and characterization of a high fill-factor micromirror array in application of wavelength selective switch (WSS). The micromirror array consists of 52 independent micromirrors. Each micromirror is composed of a cantilever-type micromirror plate (800 μm × 120 μm) with a bumper and an eight-terraced bottom electrode with a limiting plane. A cantilever beam is designed to obtain the rotation angle of micromirror plate and achieve a high fill-factor for the micromirror array. Meanwhile, the bumper and limiting plane are used to prevent the damage possibly caused by the pull-in effect or some vibration instance. An eight-terraced electrode is utilized for reducing the driving voltage. The micromirror array with a high fill-factor in excess of 97% has been successfully achieved using the bulk micromachining technologies. The measured static and dynamic characteristics show that the micromirror can achieve a maximal rotation angle of 0.87° with a Direct Current (DC) driving voltage of 156 V. The turn-on responding time is 0.57 ms, and the turn-off responding time is 4.36 ms. Furthermore micromirror plate can be easily released from the pull-in state without damaged due to the novel bumper design. The switching function between the two output ports of a WSS optical system has also been demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.