Abstract

ABSTRACTTransparent silicon solar cells can lead to an increased efficiency of silicon‐based multi‐junction assemblies by transmitting near and below band gap energy light for conversion in a low band gap solar cell. This analysis shows that the maximum efficiency gain for a low band gap solar cell beneath silicon at a concentration of 50 suns is 5.8%, based on ideal absorption and conversion of the photons. This work analyzes the trade‐offs between increased near band edge absorption in the silicon and silicon solar cell transparency. Application of these results to real cases including a germanium bottom solar cell is analyzed, leading to a range of cases with increased system efficiency. Non‐ideal surfaces and real silicon and germanium solar cell device performance are presented. The range of practical system gains may be as low as 2.2 – 1% absolute when compared with the efficiency of a light‐trapped silicon solar cell for 1‐sun operation, based on this work. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call