Abstract

The extreme behavior of surface waves as they encounter and pass compliant deepwater platforms is an important class of problems for offshore engineers attempting to specify the platform deck elevation. In this study analytical expressions for the probability density and cumulative distribution functions that utilize empirical coefficients in an attempt to accurately model surface wave runup and airgap problems are presented. The analysis focuses upon interpreting the tails of the measured data histograms using two parameter Weibull distribution models. The appropriate empirical constants, assumed to be solely dependent upon the significant wave height, were evaluated and compared for all the test data. Based upon a small select set of data, for a mini-TLP and two Spar platforms, the airgap problem was found to be adequately modeled using a Rayleigh distribution. Further, for the seven seastates analyzed, the Weibull shape parameter was nearly constant and the data confirmed that the exclusive fit of the scale parameter assuming dependence only on the significant wave height was a reasonable approach for modeling the wave runup. Finally, by combining these models with a Poisson return model for each storm the associated reliability estimates for various deck heights were estimated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.