Abstract

This paper presents a four-step training method for increasing the efficiency of support vector machine (SVM). First, a SVM is initially trained by all the training samples, thereby producing a number of support vectors. Second, the support vectors, which make the hypersurface highly convoluted, are excluded from the training set. Third, the SVM is re-trained only by the remaining samples in the training set. Finally, the complexity of the trained SVM is further reduced by approximating the separation hypersurface with a subset of the support vectors. Compared to the initially trained SVM by all samples, the efficiency of the finally-trained SVM is highly improved, without system degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.