Abstract

The earthquake-resistant design of lifelines, such as pipelines, tunnels and bridges, is based on the reliable representation and estimation of the seismic loading. In the case of lifeline–fault crossings, the design fault displacement is typically derived from estimates based on fault dimensions via empirical fault scaling relations for a given “design” scenario event. This approach comes with an unknown level of safety because the fault productivity and the actual distribution of earthquake events are essentially disregarded. To overcome this challenge, a simplified approach is proposed by statistically analyzing the outcome of probabilistic fault displacement hazard analyses (PFDHAs). A selection of faults from the 2020 European Fault-Source Model is used to build the logic tree and to set the range of parameters considered in the PFDHAs. The methodology allows the (mostly conservative) approximation of the fault displacement corresponding to any given return period based on readily available data, namely fault productivity, fault mechanism, fault length, and lifeline crossing location on the fault. The proposed methodology has been proposed and adopted as an informative Annex in prEN 1998-4:2022.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.