Abstract

Fungal species resistant to current antifungal agents are considered as a serious threat to human health, the dilemma that has dragged attentions toward other sources of antifungals such as antimicrobial peptides (AMPs). In order to improve biological activity of a recently described antifungal peptide MCh-AMP1 from Matricaria chamomilla flowers, MCh-AMP1dimer (DiMCh-AMP1), containing 61 amino acid residues connected by flexible linker (GPDGSGPDESGPDES), was designed and expressed in Escherichia coli, and its structure was analyzed using bioinformatics tools. DiMCh-AMP1 synthetic gene was cloned into pET-28a expression vector, which was then used to transform E. coli BL21 (DE3) strain. His-tag purification was achieved using metal-chelate affinity chromatography. Because there is no methionine residue in the DiMCh-AMP1 sequence, cyanogen bromide was successfully used to separate the target product from the tag. Reverse-phase high-performance liquid chromatography was used as the final step of purification. Results showed that recombinant peptide was produced in considerable amounts (0.9 mg/L) with improved antifungal activity toward both yeasts and molds compared to its monomeric counterpart. The minimum inhibition concentration and minimum fungicidal concentration values of DiMCh-AMP1 against Candida and Aspergillus species were reported in the range of 1.67-6.66 μM and 3.33-26.64 μM, respectively. Our results showed that while antifungal activity of dimerized peptide was improved considerably, its cytotoxicity was decreased, implying that DiMCh-AMP1 could be a potential candidate to design an effective antifungal agent against pathogenic yeasts and molds.

Highlights

  • With increasing of debilitating diseases that affect human immune system in recent years, more people are at risk of life-threatening fungal infections, making it a growing human health concern (Rodrigues and Nosanchuk, 2020)

  • The secondary and tertiary predicted structures of DiMChAMP1 were analyzed to determine the best linker among available flexible linkers

  • The minimum inhibition concentration (MIC) of KR-12 for C. albicans was reported as 1.25 μM, whereas we reported MIC value of 3.33 μM against C. albicans for DiMCh-AMP1

Read more

Summary

Introduction

With increasing of debilitating diseases that affect human immune system in recent years, more people are at risk of life-threatening fungal infections, making it a growing human health concern (Rodrigues and Nosanchuk, 2020). Aside from a few number of antifungal agents to combat such infections, uncontrolled administration of such drugs caused species resistant to antifungal agents and, as a subsequence, narrowed the control of fungal infections (Beardsley et al, 2018). To overcome this dilemma, antimicrobial peptides (AMPs) and their analogs are in the center of attention for therapeutic purposes (Cruz et al, 2014). Dimeric AMPs can be considered as novel antimicrobial agents with improved activity and selectivity

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call