Abstract

This paper proposes a novel idea of a combined piezoelectric energy harvesting and torsional vibration absorber for rotating system. In particular, among possible alternative solutions for durable power sources useable in mechanical components, vibration represents a suitable method for the amount of power required to feed a wireless sensor network. For this purpose energy harvesting from structural vibration has received much attention in the past few years. Suitable vibration can be found in numerous mechanical environments including automotive moving structures, household applications, but also buildings and bridges. Similarly, a dynamic vibration absorber (DVA) is one of the most used devices to mitigate the vibration structures. This device is used to transfer the primary structural vibration to the auxiliary system. Thus, vibration energy is effectively localized in the secondary less sensitive structure and it can be harvested. This paper describes the design process of an energy harvesting tuned vibration absorber for rotating system using piezoelectricity components. Instead of being dissipated as heat, the energy of vibration is converted into electricity. The device proposed is designed to mitigate torsional vibrations as a rotational vibration absorber and to harvest energy as a power source for immediate use. The initial rotational multi degree of freedom system is initially reduced in equivalent single degree of freedom (SDOF) systems. An optimization method is used for evaluating the optimal mechanical parameters of the initial absorber for the SDOF systems defined. The design is modified for the integration of the active patches without detuning the absorber. In order to estimate the real power generated, a complex storage circuit is implemented. A fixed voltage is obtained as output. Through the introduction of a big capacitor, the energy stored is measured at different frequencies. Finally, the simultaneously achievement of the vibration reduction function and the energy harvesting function is evaluated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.