Abstract

In the present research, a bio-composite material was initially designed and developed as per the requirement of prosthesis implants. Hydroxyapatite (HA) is considered as one of mostly used biomaterial due their unique characteristics of similarity in the composition of human bone and its bioactivity. Ti–6Al–4V is one of the foremost used materials in bio-implants due to their strength, wear resistance, corrosion resistance and bio-compatibility. The addition of HA in Ti alloy substantially improves its bioactivity and biocompatibility. However, at the same time, the wear rate of bio-composite increases. In the present work, Ti–6Al–4V/hydroxyapatite composite was developed by powder metallurgy method. To evaluate the real-time tribological characterization, the biocomposite was processed against the Al2O3 counter-surface in the presence of phosphate buffered saline (PBS) as a lubricant. In terms of characterization, the pin-on-disk tribometer was used for the evaluation of wear rate and friction coefficients in the range of 5 N–30 N of load. Scanning electron microscopy (SEM) micrographs revealed that plastic deformation and the abrasion are the main mechanisms of biocomposite/Al2O3 system. The pull-out material from the biocomposite plays a negative role on the friction coefficient and wear rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.