Abstract

Real-time feedback controllers for two semiconductor etching processes are developed. Both controllers rely upon in situ spectroscopic ellipsometry measurements of sample thickness for their feedback variables. Spectroscopic ellipsometry (SE) is a commonly used nondestructive, noninvasive in situ sensor for dry etching. The first etching process we consider is the thermal chlorine etching of gallium arsenide. An empirical/first principles physics-based model for the etching process is developed. A linear-quadratic controller based on the model is designed and tested. The second etching process is the electron cyclotron resonance freon-14/oxygen (CF/sub 4/O/sub 2/) plasma etching of silicon nitride thin films. An adaptive etch rate controller for the fluorocarbon plasma etching process is designed, implemented, and tested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.