Abstract

We report the design, development and performance of the SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) CCD camera electronics on NASA's Solar Terrestrial Relations Observatory (STEREO). STEREO consists of two nearly identical space-based observatories; one ahead of Earth in its orbit, the other trailing behind to provide the first-ever stereoscopic (3D) measurements to study the Sun and the nature of its coronal mass ejections. The SECCHI instrument suite consists of five telescopes that will observe the solar corona, and inner heliosphere all the way from the surface of the Sun to the orbit of the Earth, and beyond. Each telescope contains a large-format science-grade CCD; two within the Heliospheric Imager (HI) instrument, and three in a separate instrument package (SCIP) consisting of two coronagraphs and an EUV imager. The CCDs are operated from two Camera Electronics Boxes. Constraints on the size, mass, and power available for the camera electronics required the development of a miniaturised solution employing digital and mixed-signal ASICs, FPGAs, and compact surface-mount construction. Operating more than one CCD from a single box also provides economy on the number of DC-DC converters and interface electronics required. We describe the requirements for the overall design and implementation, and in particular the design and performance of the camera's space-saving mixed-signal CCD video processing ASIC. The performance of the camera is reviewed together with sample images obtained since the STEREO mission was successfully launched on October 25 2006 from Cape Canaveral.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call